

Valorisation des nuages de points Lidar pour la dendrométrie

Agence Montagnes d'Auvergne Service Aménagement

méthode

- schéma général
- o focus sur:
 - La segmentation du nuage de point
 - Les placettes de calibration terrain
 - L'élaboration des modèles statistiques
 - L'évaluation des modèles statistiques

résultats

- o Illustration par quelques cartes: Ho, G, Do, Dg, GGB, %GGB, N, typo, trouées ...
- o exemple d'utilisation en préparation d'opération sylvicole
- o exemple d'utilisation pour l'élaboration des aménagements forestiers

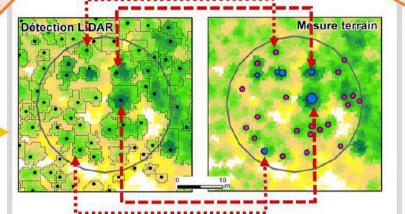
• intérêts, limites vis-à-vis des méthodes classiques

- o cartographie
- o erreurs connues
- o des compartiments non accessibles
- des notions plus techniques et complexes
- o de l'approche par forêt à l'approche par territoire
- o monitoring et suivi en continu de la ressource (mise à jour par photogrammétrie)

autres valorisations du sursol à caractère expérimental

- DFCI : Volume de combustible et continuité
- O SDM: Modèles de Distribution Spatiale d'espèces
- o IMAT : indice de maturité structurale des peuplements
- connectivité

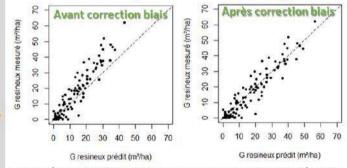
Méthode – schéma général


1. Détection des individus (SEGMA) Apex détectés Nuage LiDAR (classifié) surf 28 m Hauteur 43 m, Individus isolés Individus décrits SEGMA (B. ST-ONGE) dans Computree (http://computree.onf.fr) permet de délimiter les apex et enveloppes présumés des arbres à partir d'un MNH LiDAR. Chaque individu détecté est décrit (hauteur, surface, volume et forme de couronne).

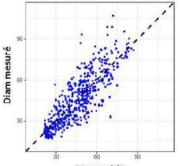
Placettes de référence terrain

Placettes (et arbres) inventoriés sur le terrain

Placette 3



Correspondance entre arbre terrain positionné \leftrightarrow détection LiDAR. 1 jeu de données d'apprentissage contenant pour chaque individu :

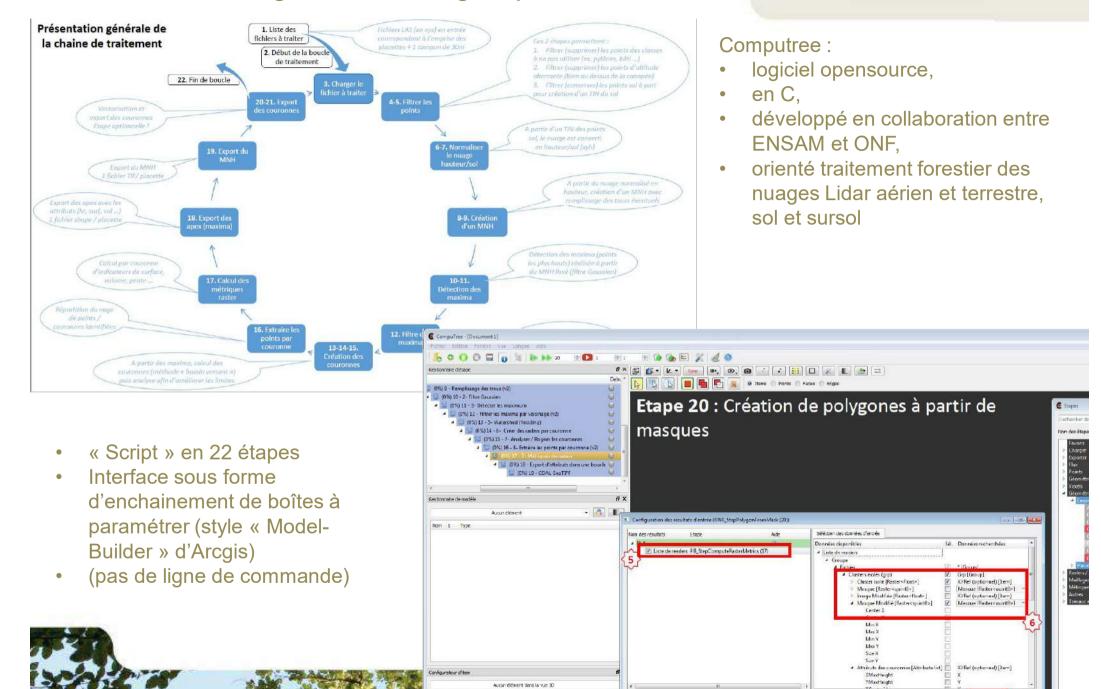

- les informations terrain (essence, diamètre ...)
- et LiDAR (hauteur, surface, volume et forme de couronne).

4. Estimation des paramètres forestiers /placette

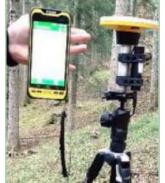
- Données individu ≠ inventaire en plein (erreurs de détection et de prédiction).
- Calcul à la placette = somme ou moy des caractéristiques apex /placette + correction du biais ! (application d'une régression linéaire référence terrain / LiDAR).

3. Prédiction de la famille d'essence. du diamètre / individu

Diam prédit


		Prédit			Bonne
		Sapin	Pin	Feuil	prédiction
e	Sapin	63	11	7	78%
Mesurée	Pin	16	59	6	73%
Š	Feuil	11	4	66	81%
	Prédi	ction g	lobal	e	77%

- Modèles prédiction / individu (arbre) : famille d'essence, diamètre et/ou volume.
- Calibrés à partir de l'échantillon apparié (2): méthode statistique des forêts aléatoires.
- · Variables explicatives : hauteur, surface, volume et forme de couronne LiDAR ...


Lidar – présentation de la méthode

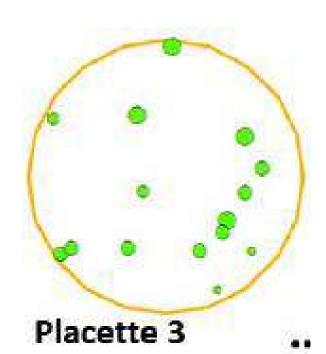
Office National des Forêts

focus sur la segmentation du nuage de points

Focus sur les placettes de calibration terrain

- pour recalage sur nuage de points
- GPS métrique

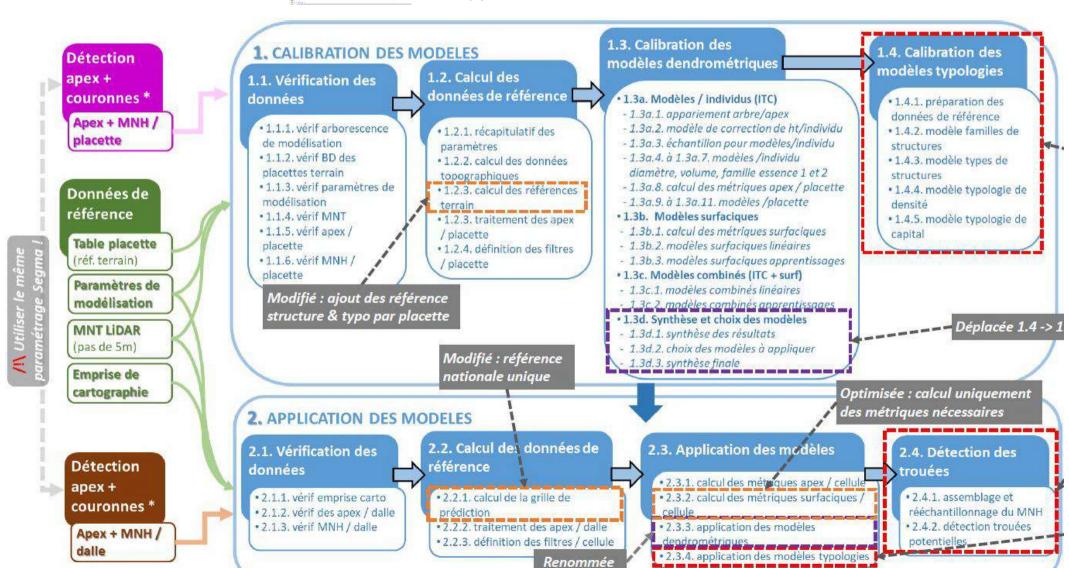
- Pour appariement avec individus segmentés dans le nuage de points
- **Azimut**
- Distance horizontale (vertex : ultrasons)


- Essence
- diamètre

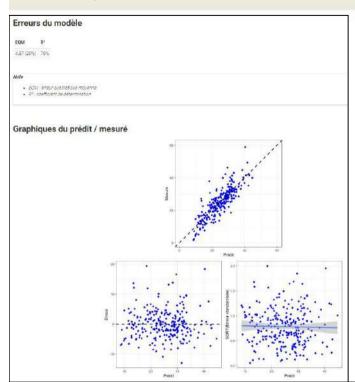
(+ d'éventuelles mesures complémentaires pour analyse statistique traditionnelle)

Calcul des références pour la modélisation

- Apprentissage à l'arbre
- Dendrométries à la placette (pour correction de biais à l'échelle placette - pixel)


Focus sur l'élaboration des modèles

Sous



The part of the pa

- 1 ligne 1 étape 1 script
- validation indépendante des modèles
- rapports d'étape pour analyse, qualifier erreurs de modél, ...
- application des modèles sur l'ensemble de la zone d'étude

Lidar – présentation de la méthode

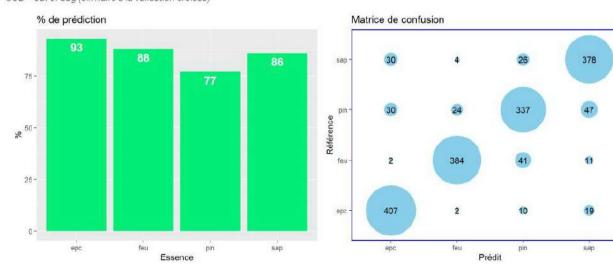
Focus sur l'évaluation des modèles

Modèles emboités :

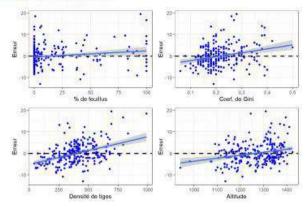
- randomForest pour le prédiction de diamètre
- Puis linéaire pour la correction de biais à l'échelle placette

Exemples de rapport pour :

- Quantification erreur
- Identification des biais prédit / mesuré
 - Globaux
 - Par contexte

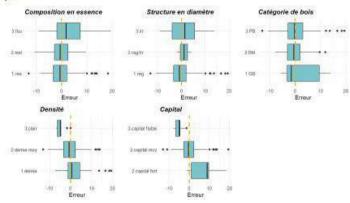

Erreur en apprentissage (OOB)

* 00B = out of bag (similaire à la validation croisée)

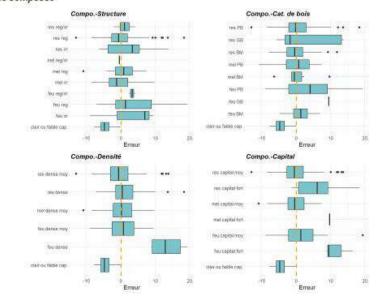

Précision Kappa

86%

81%

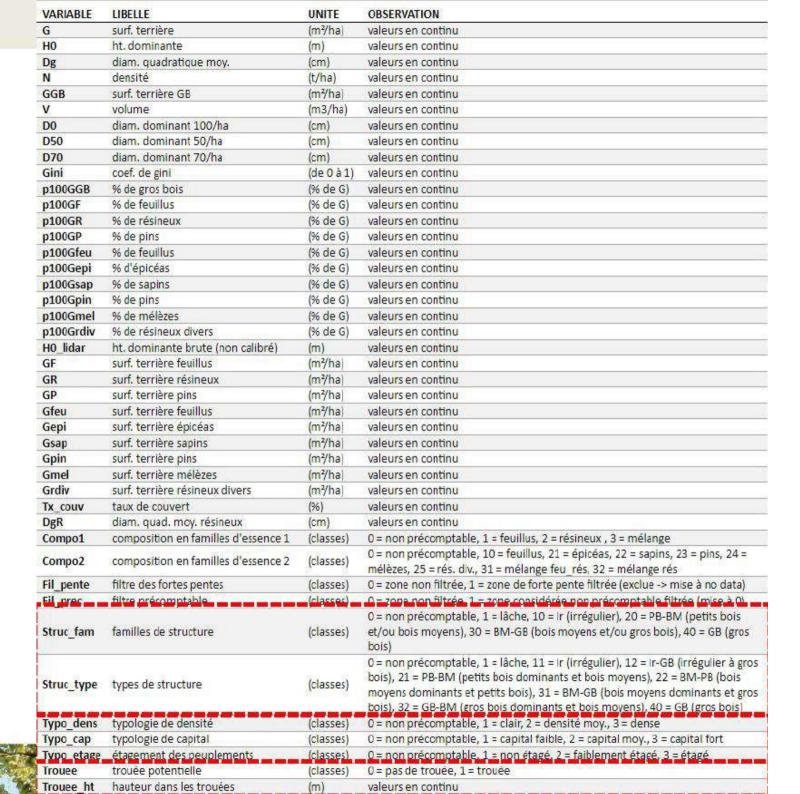


Résidus / paramètres forestiers

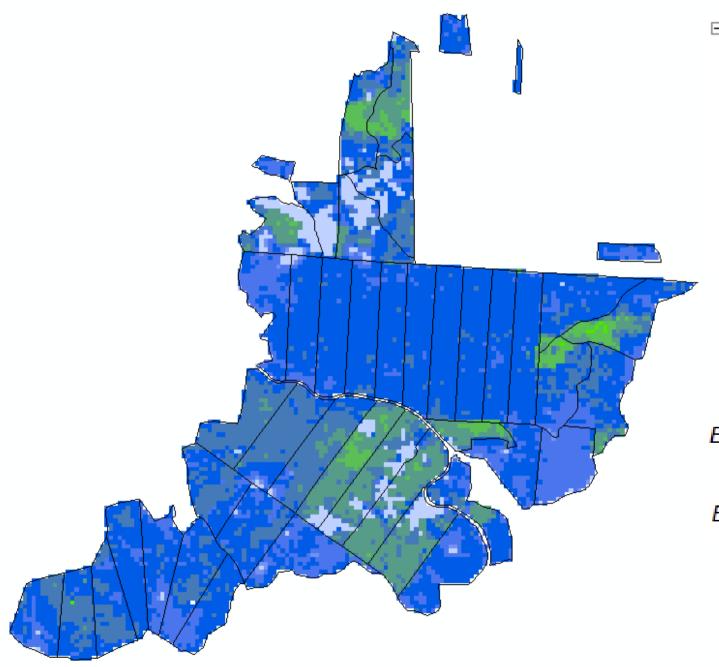


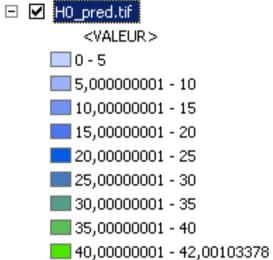
Résidus / types de peuplements génériques

Types simples



Types composés



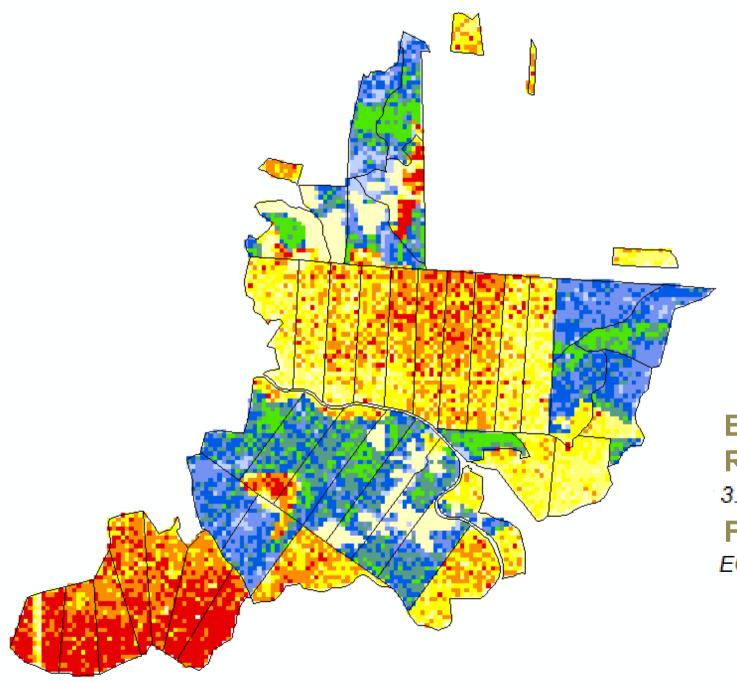

Lidar – résultats

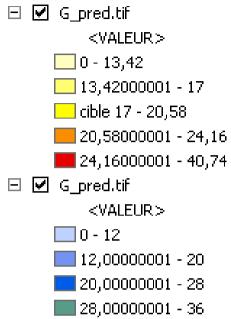
Liste des couches géographiques produites

Résultats - Lidar dendrométrie Ho

Erreurs pixel:

Rx


EQM: 1 (3%) - R2: 0.87


Feu

EQM: 0.7 (3%) - R2: 0.82

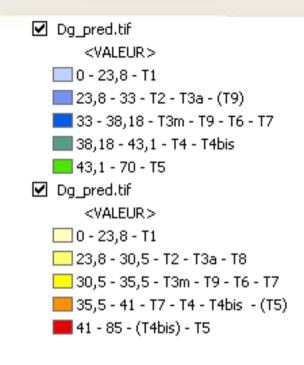
Résultats - Lidar dendrométrie G

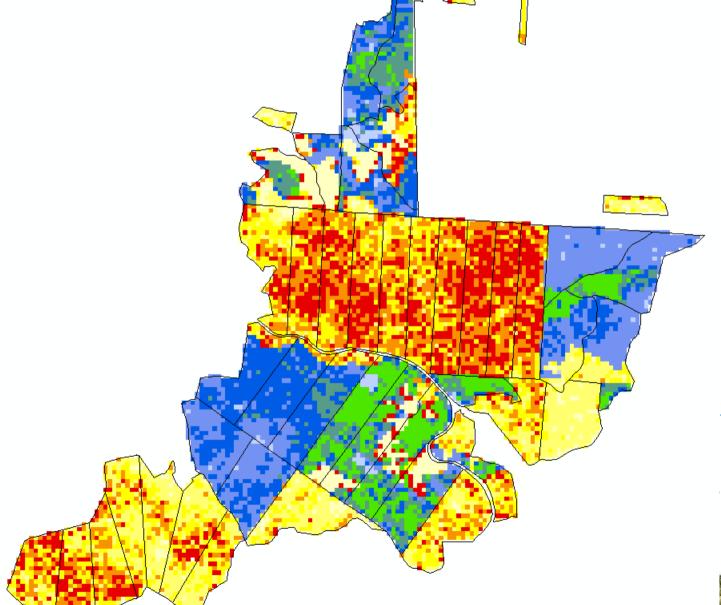
Erreurs pixel:

Rx

3.8 (14%) - R2 : 0.85

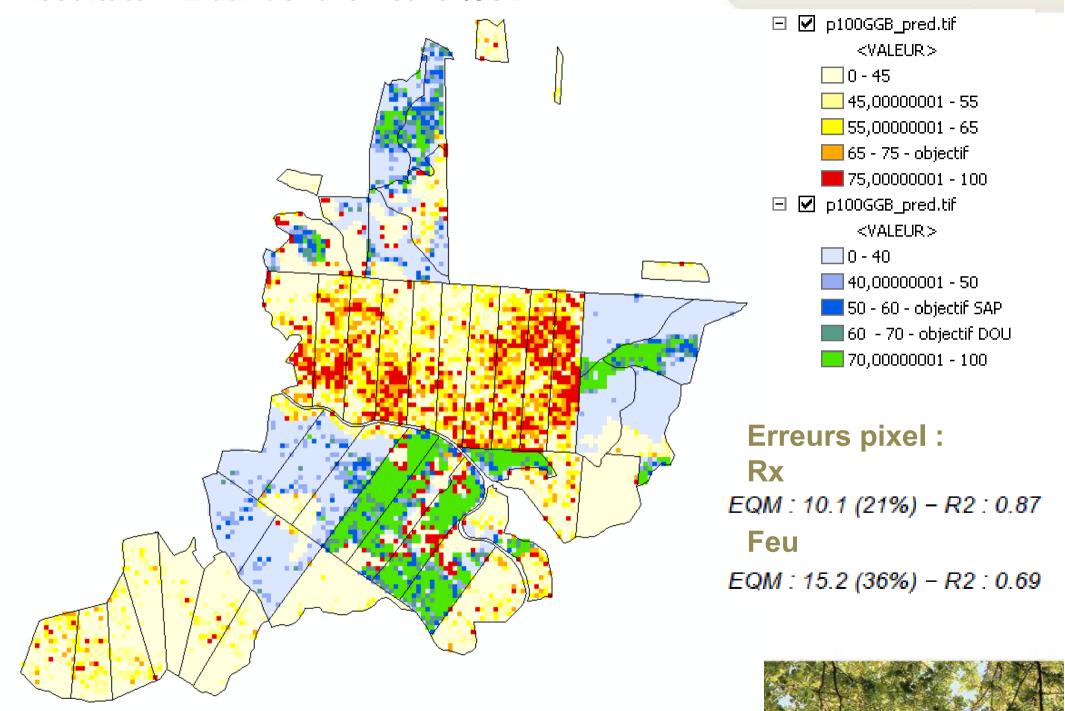
Feu


EQM: 2.9 (16%) - R2: 0.53


36,00000001 - 62

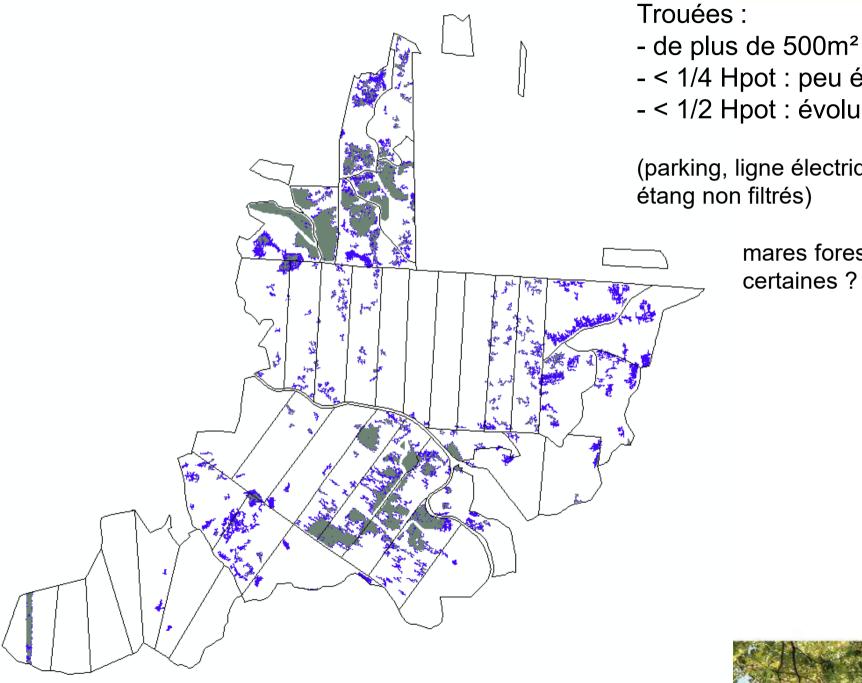
Résultats - Lidar dendrométrie Dg

Erreurs pixel:


Rx

EQM: 3 (8%) - R2: 0.85

Feu


EQM: 2.9 (8%) - R2: 0.85

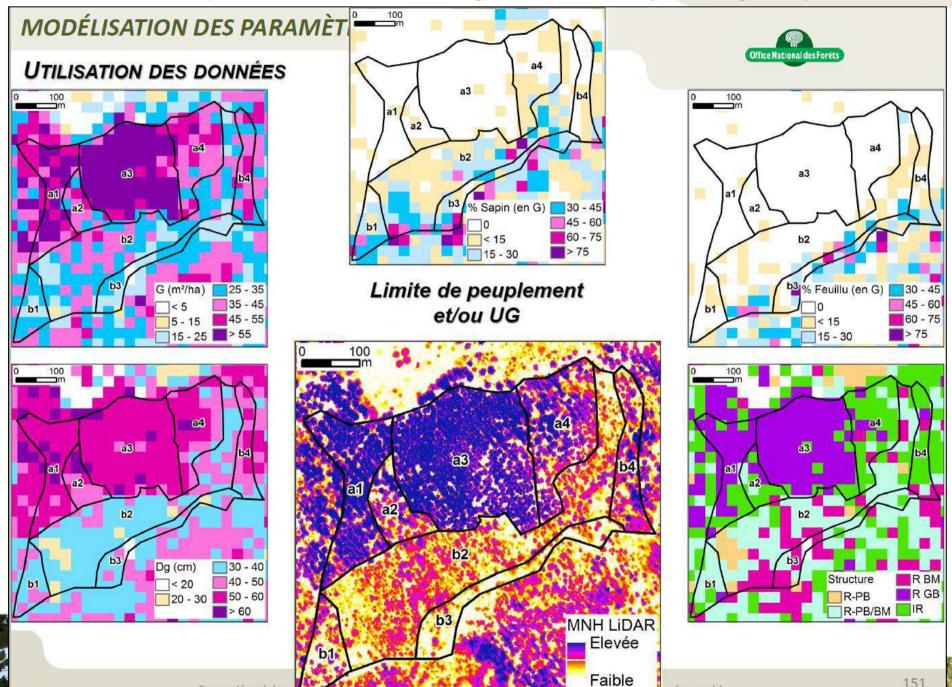
Résultats - Lidar dendrométrie %GB

Résultats - Lidar dendrométrie Trouées potentielles

- < 1/4 Hpot : peu évoluées

- < 1/2 Hpot : évoluées

(parking, ligne électrique et étang non filtrés)


> mares forestière pour certaines?

Formation à la r

Résultats – pour l'élaboration des aménagements forestiers (plans de gestion)

aéroporté

Structure

R GB

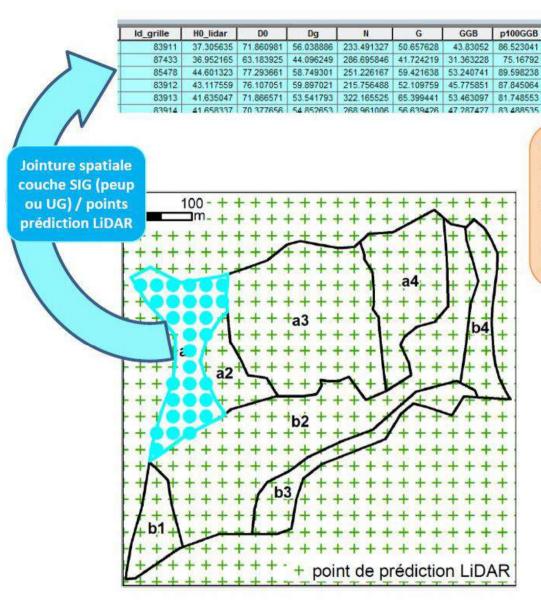
R GB

R GB

R GB

Capital

0 2.538573 M


0 0.868812 M 0 1.040461 R

0 R

0 R

0 R

Résultats — pour l'élaboration des aménagements forestiers (plans de gestion)

Attention: prendre en compte le nombre de val. = 0!

48.119055

0 52.109759

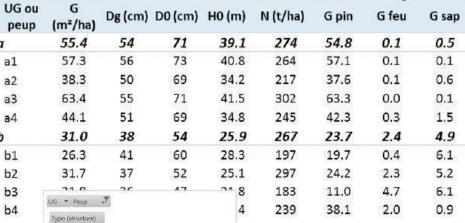
0 65.399441

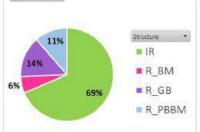
- · Utiliser dans la moy. pour G, GGB ...
- Ne pas utiliser pour les valeurs dominantes (H0, D0 ...)

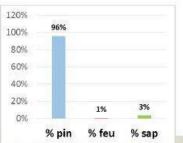
p100GR

0 2.082274 40.855407

0 1.750979 58.381178

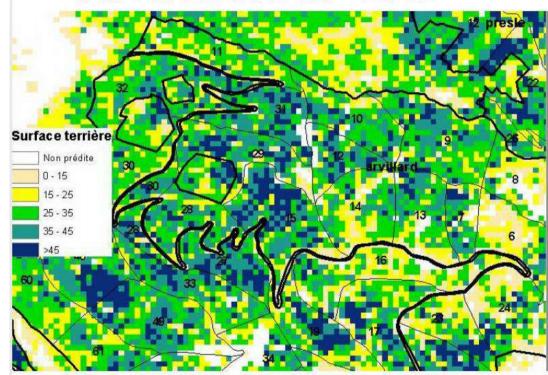

0 5.011235

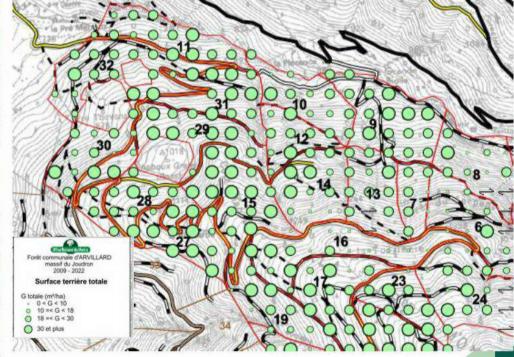

98.249021


100

100

 Dans tous les cas calculer le % de val. = 0 / nb val. total (indicateur de vide / UG) Récapitulatif dendrométrique (par peup. ou UG)





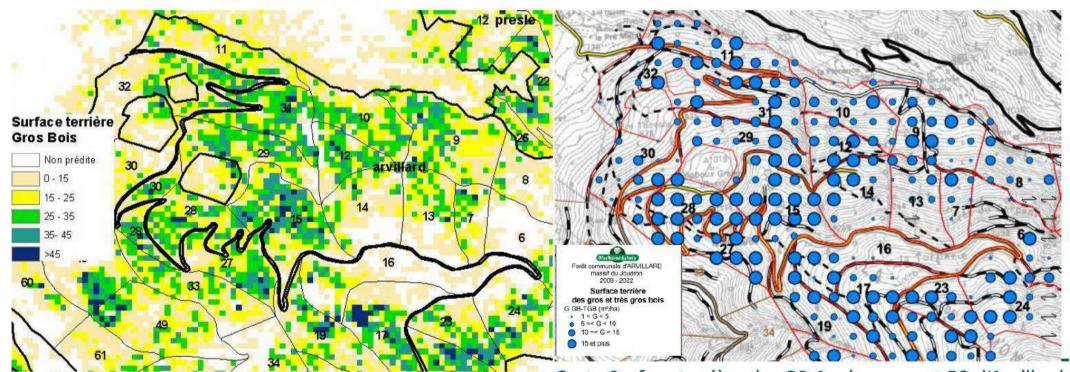
++: des cartes plus fines

Les résultats : exemples de cartes Des cartes exhaustives de prédiction des paramètres, à la résolution de ~25 m

Carte Surface terrière prédite LiDAR FC d'Arvillard Placettes de l'Observatoire Savoie : 1 placette/130 ha

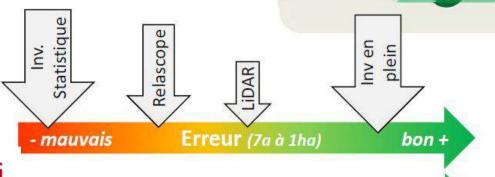
Carte Surface terrière Aménagement FC d'Arvillard

Placettes de l'aménagement : 1 placette/ ha

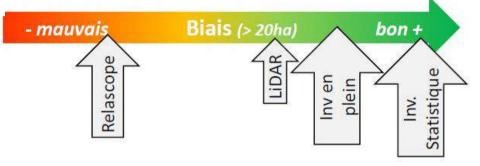


++: des cartes plus fines

Les résultats : exemples de cartes Des cartes exhaustives de prédiction des paramètres, à la résolution de ~25 m



Carte Surface terrière des GB par LiDAR FC d'Arvillard Placettes de l'Observatoire Savoie : 1 placette/130 ha Carte Surface terrière des GB Aménagement FC d'Arvillard Placettes de l'aménagement : 1 placette/ ha



+ : des erreurs bien placées

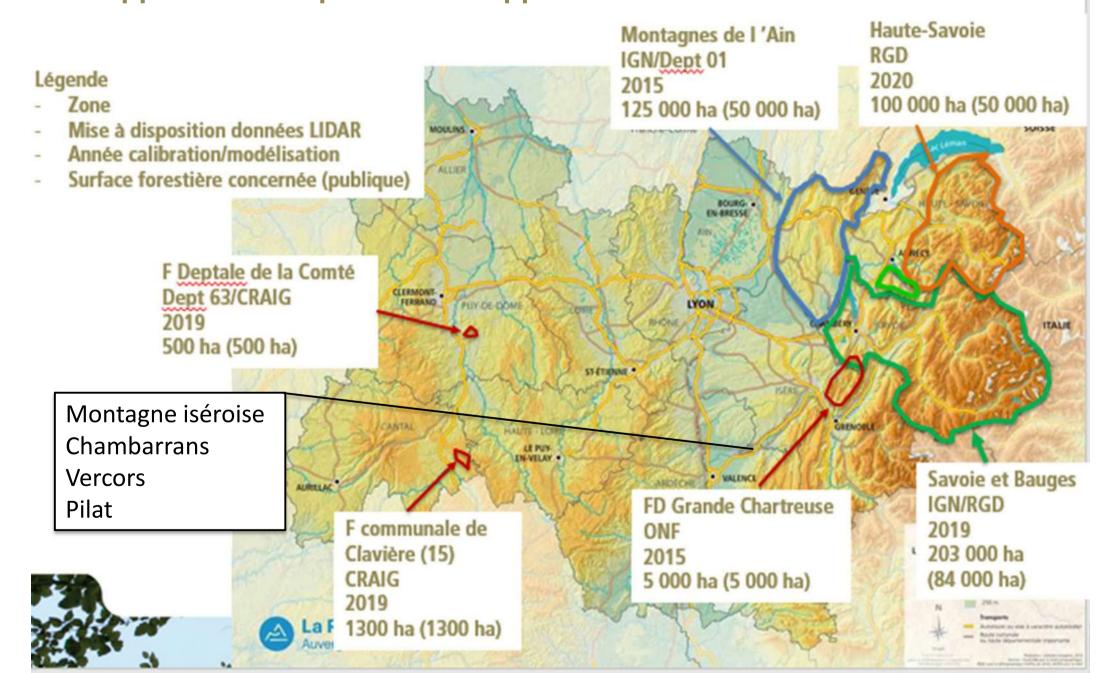
Office National des Forêts

✓ Comparaison des méthodes pour G

Erreurs et biais des différentes méthodes d'inventaire pour la surface terrière (G)

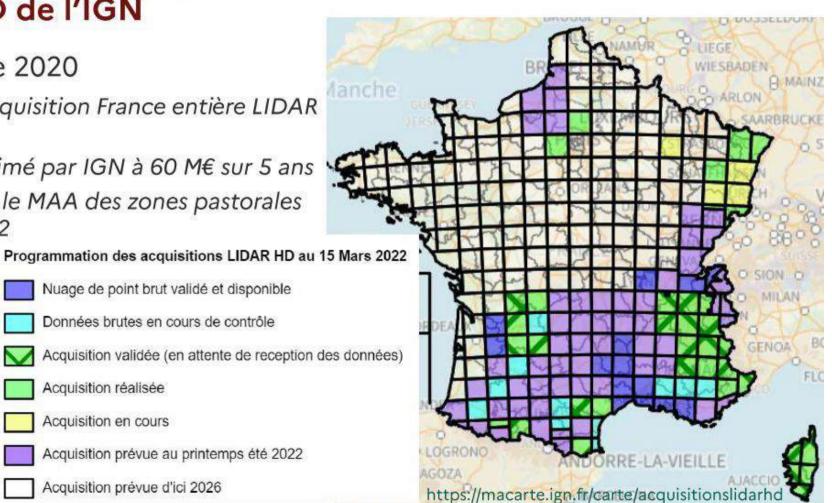
	<u>Erreur</u> / placette (≈ 7 ares)	<u>Erreur</u> / peuplement (≈ 1 ha)	<u>Biais</u> / bloc (> 20 ha)	Observation
Modélisation LiDAR	3 à 9 m²/ha (soit 13 à 26%)	2 à 5.5 m²/ha (soit 7 à 20%)	-1.4 à +1.0 m²/ha (-5 à +3%) *1	*1 : négatif = sur estimation LiDAR
Relascope au facteur 1	6.3 m²/ha (24%) en moy. 8.7 m²/ha (33%) au max.	erreur ≈ placette	-2.1 m²/ha (-8%) en moy. -6.1 m²/ha (-26%) au max. *2	Source : étude RDI (remesure) menée sur 202 points au facteur 1 (sur 7 forêts de montagne ≠) *2 : négatif = sous estimation relascopique
Relascope au facteur 2	6.2 m²/ha (24%) en moy. 7.4 m²/ha (29%) au max.	erreur ≈ placette	+1.8 m²/ha (+7%) en moy. +5.1 m²/ha (+20%) au max. *2	Source : étude RDI (remesure) menée sur 198 points au facteur 2(sur 7 forêts de montagne ≠) *2 : négatif = sous estimation relascopique
Inventaire en plein	non concerné	-15 à +10% (soit $\approx \pm 2$ à 3.5 m ² /ha)	-2.5% (soit ≈ 0.5 à 0.8 m²/ha) *3	Source: Duplat P., Perrotte G., 1981, Inventaire et estimation de l'accroissement des peuplements forestiers *3: négatif = sous estimation inv. en plein
Inventaire statistique par placette	pour info : 0.5 à 1.5 m²/ha	Pas d'estimation possible!	Biais non quantifié! Erreur statistique = erreur d'échantillonnage	Le biais n'est pas estimé dans les inventaires statistiques, mais on peut le considérer comme faible

-- des données non accessibles au Lidar


Le renouvellement de la forêt :

- Semis
- Perches
- Dégâts de gibier
- des données qui peuvent être limités dans le niveau de détail souhaité :
 - Des essences détaillées
 - Une répartition par classes de diamètre
 - Le G des PB
 - Une distinction GB / TGB / TTGB
- ne pas oublier que le regard sur le terrain reste primordial!

+ : changement d'échelle De l'approche forêt par forêt à l'approche territoire



+ : changement d'échelle Facilité par la campagne Lidar HD de l'IGN

Le LIDAR HD de l'IGN

- ✓ Plan de relance 2020
 - 22 M€ pour l'acquisition France entière LIDAR HD à 10 pts/m²
 - Coût global estimé par IGN à 60 M€ sur 5 ans
 - Priorisation par le MAA des zones pastorales sur 2021 et 2022

Nuage de point brut validé et disponible Données brutes en cours de contrôle Acquisition validée (en attente de reception des données) Acquisition réalisée Acquisition en cours Acquisition prévue au printemps été 2022 Acquisition prévue d'ici 2026

+ : Des effets collatéraux

prises de données complémentaires à la calibration

- Pour monitoring environnemental :
 - Bois mort sur pied
 - Bois mort au sol
 - Dendromicrohabitats
- Pour le monitoring des forêts (flux) :
 - Passage à la futaie
 - Accroissements
 - Mortalité
 - Prélèvements

Evolution des méthodes de travail

- Le forestier fait moins de mesures quotidiennes et plus d'expertise
- Passer
 - D'une évaluation ponctuelle sur la forêt (pour plan de gestion) ou sur la parcelle (pour coupe)
 - à un suivi de ressource à l'échelle gestion (<> IFN qui propose un suivi de ressource à l'échelle nationale ou départementale)

Travaux de recherche INRAE Aix

Objectif:

amélioration de la cartographie du combustible, qui elle-même sert de base fondamentale à toute la chaîne d'évaluation du risque :

- cartes de sensibilité de la végétation utilisées en saison opérationnelle (croisement avec les indices météo pour l'évaluation du danger),
- cartes d'évaluation du risque à long terme à l'échelle nationale (par croisement avec les conditions météo future),
- cartes d'aléa incendie, utilises pour de très nombreuses applications (plans régionaux et départementaux, plans de massifs, PPRIF)
- etc.

Calibration LIDAR : données DFCI

Les données concernent la végétation située au sein de la placette de 10 m de rayon (ou 15 m selon les protocoles).

Il est fortement recommandé de matérialiser le centre de la placette ainsi que 4 points périmétraux avec des jalons ou des rubans de rubalise à installer en arrivant sur les placettes et à remballer après.

Le travail par quart de placette facilite parfois l'appréhension des recouvrements.

La prise des données DFCI doit être faite après l'acquisition des données <u>dendro</u>, de telle sorte que toute la placette ait été parcourue avant de renseigner les données de recouvrement.

Les strates indiquées sont des strates de hauteur, pas des strates de type « étage dominant / sousétage / arbustif » dont on a l'habitude en foresterie. Ici, on sort d'une logique peuplement, on ne s'intéresse qu'à des quantités de combustibles en 3D. Par exemple, la végétation de la strate [4 – 5 m] peut comprendre des arbustes de sous-étage et/ou des branches basses de l'étage supérieur.

Les recouvrements sont en dixièmes (autrement dit en classes de 10 % : 0; 1 à 10 %, 11 à 20 %, etc.). Toutefois ne pas tergiverser à 10 % près. Sont à prendre en compte la végétation vivante et la végétation morte, mais pas les troncs (par exemple dans une haute futaie de gros bois sans aucun sous-bois, on compterait un recouvrement de 0 pour toutes les strates considérées).

NB: intercalibration à prévoir en formation.

Données à prendre :

- Sol nu ou mousse ou litière (i.e. tout ce qui n'est pas couvert par les strates herbacée et arbustive) : recouvrement
- Herbacées (dont aphyllanthe): recouvrement

Attention la litière peut fausser l'œil en se confondant visuellement avec les herbacées.

- Pour chacune des strates suivantes, noter l'espèce principale :

[0-2 m]; [2-5 m]; [>5m]

Noter une, deux ou trois espèces représentant à elles seules ¾ de la végétation présente ; sinon, noter « mélange ».

Mini-flore arbustes disponible pour la Provence calcaire.

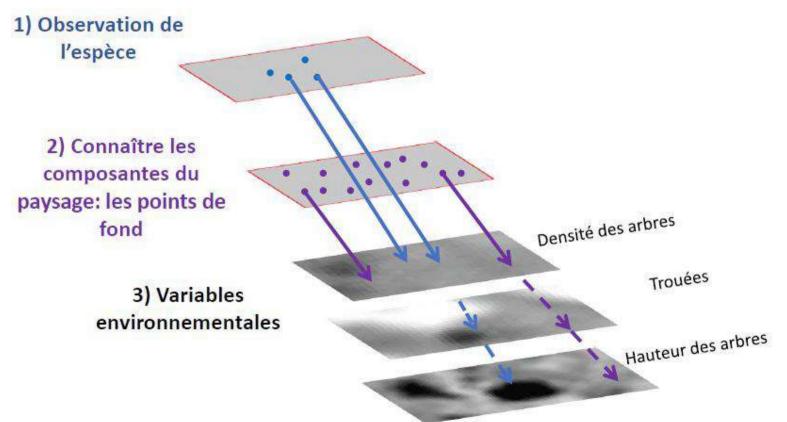
- Puis pour chacune des strates suivantes, noter le recouvrement de la végétation :

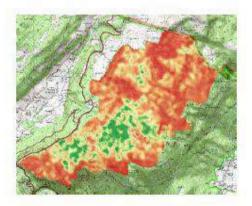
[0-0,5 m]; [0,5-1 m]; [1-2 m]; [2-3 m]; [3-4 m]; [4-5m]

On imagine qu'on ait supprimé la végétation au-dessous et au-dessus des hauteurs limites de la strate et qu'on regarde le recouvrement de ce qui reste depuis le ciel.

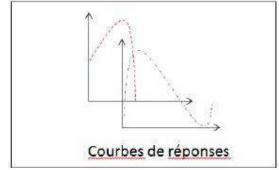
Pour la strate [0 - 0,5 m], les herbacées ne sont PAS à prendre en compte, ni la litière potentiellement épaisse.

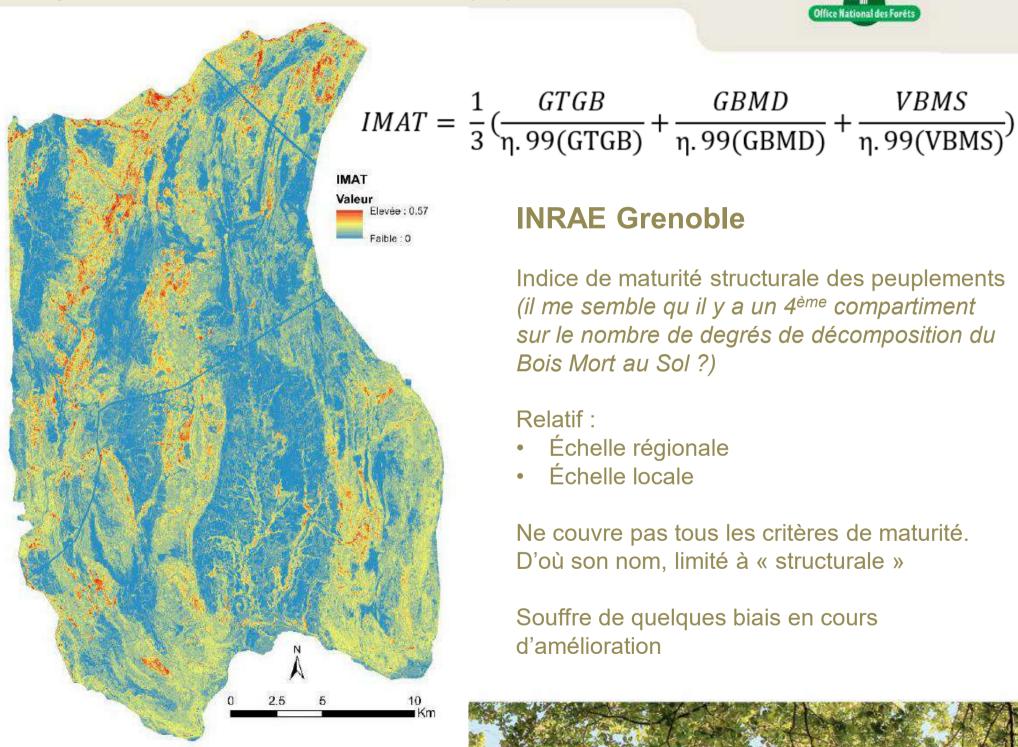
Le raisonnement peut utilement commencer par aborder les grands ensembles de manière globale ; notamment visualiser les strates qui n'ont pas de différence notable entre elles.


L'utilisation de perches graduées est recommandée ; par défaut les opérateurs peuvent se calibrer en hauteur : 2 m représente souvent la hauteur bras levé, 1 m la hanche, 0,5 m le genoux...


II. Modélisation des habitats

Les modèles d'habitat, comment ça marche?

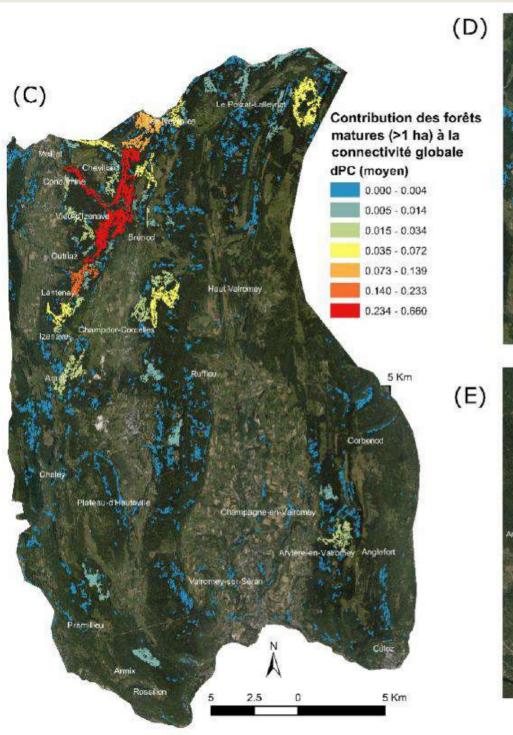

Données Modélisation Résultats

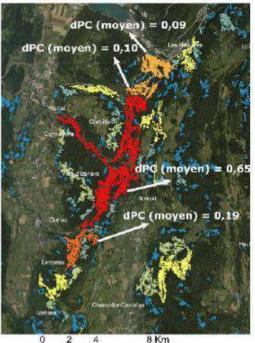

Obtention d'une carte de qualité de l'habitat

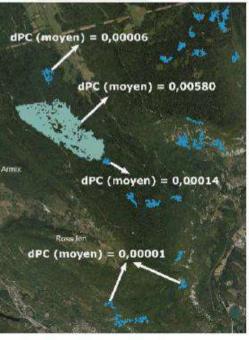
Comprendre ce qui caractérise l'habitat

INRAE Grenoble

Indice de maturité structurale des peuplements (il me semble qu il y a un 4ème compartiment sur le nombre de degrés de décomposition du Bois Mort au Sol ?)


Relatif:


- Échelle régionale
- Échelle locale


Ne couvre pas tous les critères de maturité. D'où son nom, limité à « structurale »

Souffre de quelques biais en cours d'amélioration

Perspectives – Connectivité

2 Km

0.5

INRAE Grenoble

Mise en évidence des forêts mâtures jouant un rôle déterminant dans la connectivité des milieux

Échelle relative :

- Régionale
- Locale

Permet aussi de mettre en évidence les connectivités à restaurer

Lidar dendrométrie Observatoire des forêts

FIN

Agence Montagnes d'Auvergne Service Aménagement

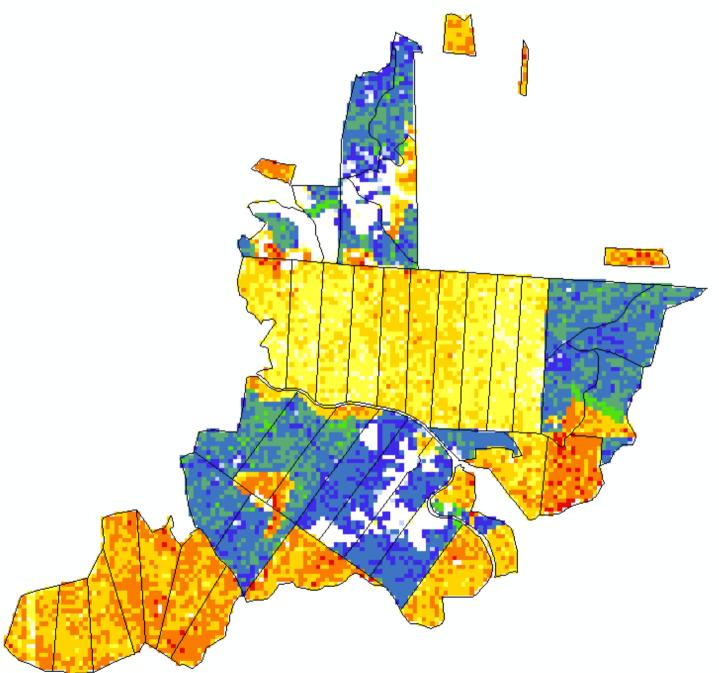
Résultats - Lidar dendrométrie GGB

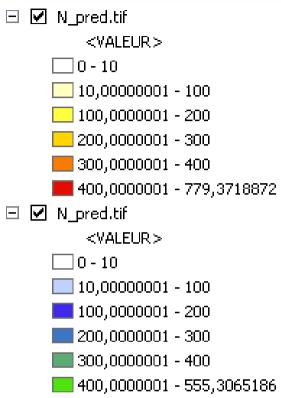
☐ GGB_pred.tif <VALEUR> □0-2 2,000000001 - 10 10,00000001 - 15 15,00000001 - 20 20,00000001 - 25 **25,00000001 - 30** 30,00000001 - 35 35,00000001 - 57,2350769 ☐ **GGB_**pred.tif <VALEUR> 0 - 0,5 0,5 - <u>5</u> 5,000000001 - 10 10,00000001 - 15 **15,00000001 - 20**

Erreurs pixel:

Rx

EQM: 3 (21%) - R2: 0.9


20,00000001 - 32,97865295


Feu

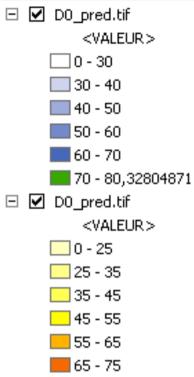
EQM: 2.8 (35%) - R2: 0.76

Résultats - Lidar dendrométrie N

Erreurs pixel:

Rx

EQM: 62.5 (25%) - R2: 0.58

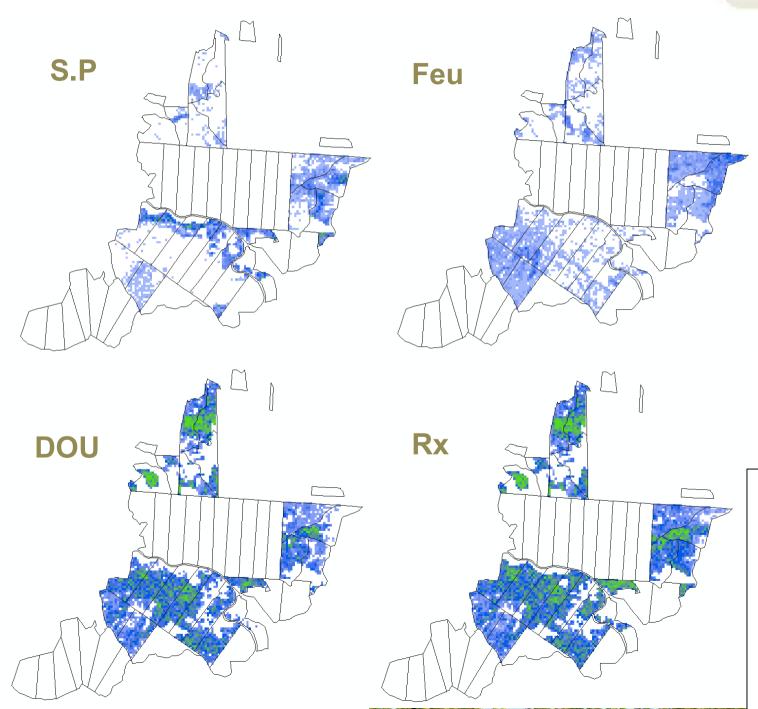

Feu

EQM: 54 (24%) - R2: 0.73

Résultats - Lidar dendrométrie Do

Erreurs pixel:

75 - 85


Rx

EQM: 2.9 (6%) - R2: 0.88

Feu

EQM: 3.2 (8%) - R2: 0.81

Résultats - Lidar dendrométrie Gess

☐ 0 - 1
☐ 1,000000001 - 5
☐ 5,000000001 - 10
☐ 10,00000001 - 15
☐ 15,00000001 - 20
☐ 20,00000001 - 25
☐ 25,00000001 - 30
☐ 30,00000001 - 35
☐ 35,00000001 - 40
☐ 40,00000001 - 45
☐ 45,00000001 - 61,29135513

Erreurs pixel:

EQM: 4.9 (26%) - R2: 0.83

S.P

EQM: 4.5 (102%) - R2: 0.78

Rx

EQM: 3.7 (16%) - R2: 0.88

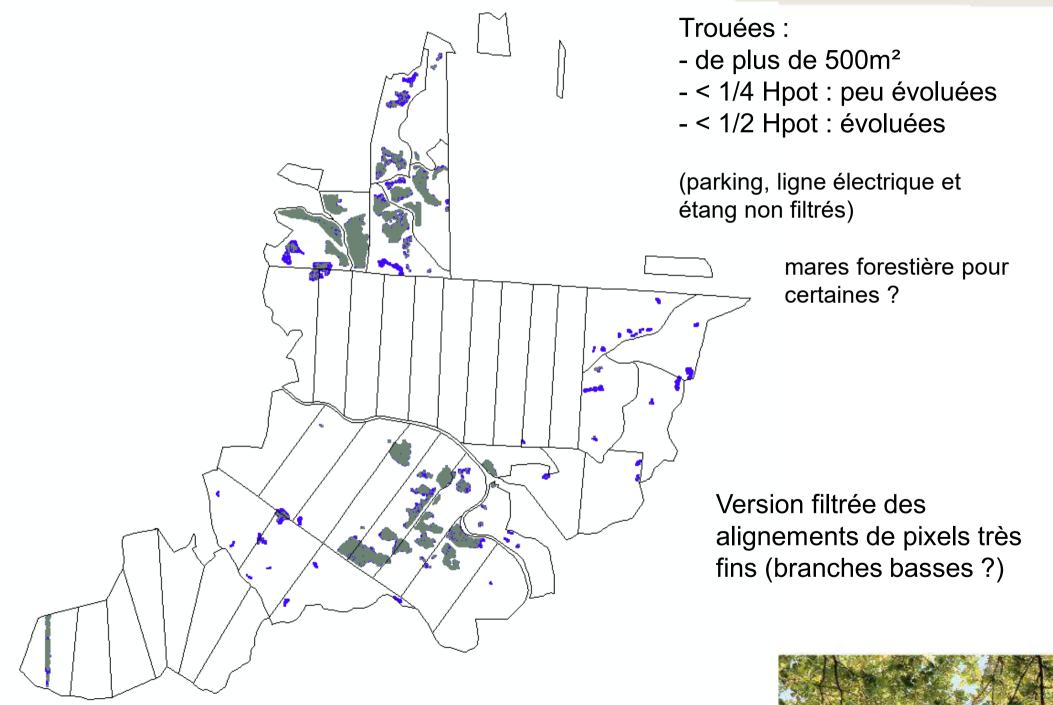
Feu

EQM: 3.5 (91%) - R2: 0.4

ERREUR DE VALIDATION

Précision (bonne prédiction) : 81 %

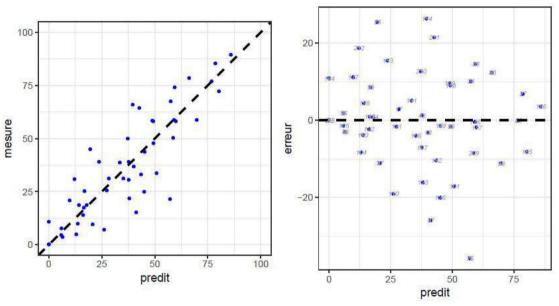
rdiv: 80 %


feu: 77 %

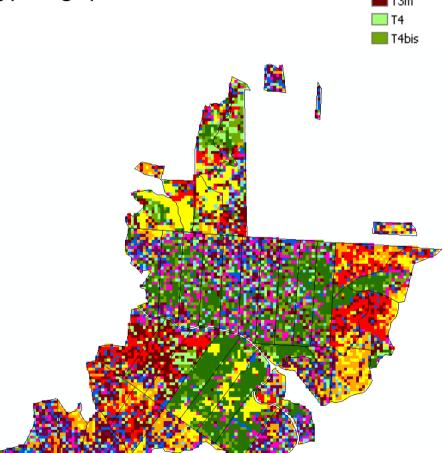
sap: 94 %

Kappa: 54 %

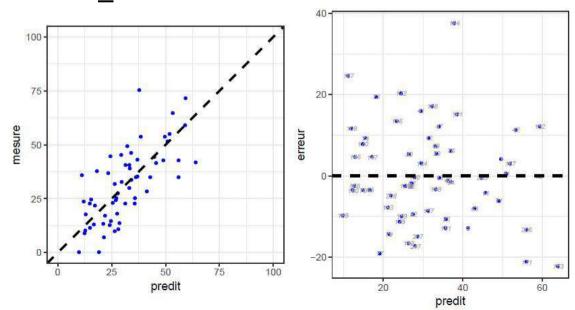
Résultats - Lidar dendrométrie Trouées potentielles



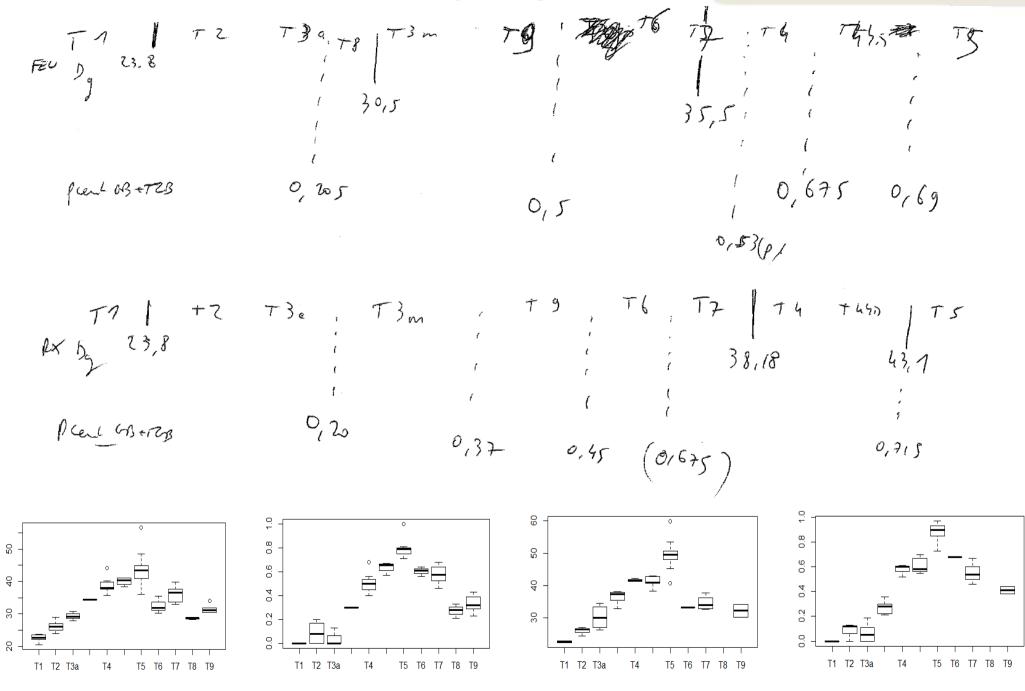
___ T1


Résultats - Lidar dendrométrie Typologie peuplement

Essai en modélisant %BM – non reproductible systématiquement


Pcent_GBM RX: EQM: 12.3 (34%) - R2: 0.72

Les modèles %BM sont corrects.
Application de la clé typologique.



Pcent GBM FEU: EQM: 11.9 (38%) - R2: 0.49



Résultats - Lidar dendrométrie Typologie peuplement

Résultats - Lidar dendrométrie - Utilisation - exemple P16

Les données chiffrées, cartographiques auraient elles aidé :

- Pour l'inscription à l'Etat d'Assiette ?
- Pour préparer le martelage ?
- Pour les décisions d'aménagement ?

•	MEAN ▼	objectif 🔻	atteinte objectif 🔻
G	33,8	20	irréaliste en rattrapage un peu faible en équilibre ?
Do	51,4	70	atteint dans 20 ans sera dépassé
Dg	41,4		
GGB	24,9	DOU 13	prélever GB
%GB	74%	DOU 65% SAP 56%	prélever GB
N	239		
Gdou	23,4	20	peu toucher au DOU
Gsap	9,3	0	prélever SAP
Gfeu	1,1		
typo	T5	IRR	
%BM 21%		DOU 25% SAP 30%	conserver BM
acct estimé	8 m²/ tot 8 ans	gestion lumière / ronce	prélever acct déjà élevé /gestion lumière capitalisation

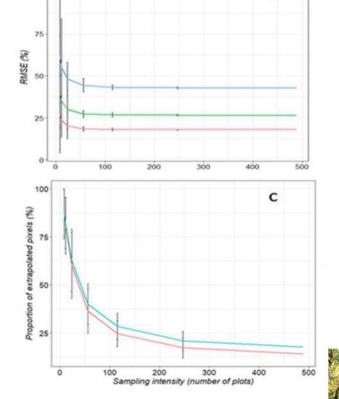
- Nécessité d'exprimer les objectifs dans le même langage que la donnée → %GB
- Prélever 2/3 SAP au Nord, un peu DOU au Sud, dans les 50 essentiellement
- -Cohérent avec martelage effectué

En situation standard on a l'essentiel des infos nécessaires

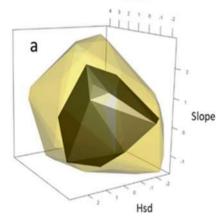
1 , [P16	perches	PB-BM	GB		perches	PB-BM	GB
	G		2,2	4,0	N	2	23	20
	dou		0,1	0,5	dou		1	2
	sap		2,1	3,6	sap	1	22	18

+: des erreurs connues

Les résultats : variables modélisables et erreurs


	Erreurs de prédiction au pixel de 7 ares			
Modèles	Contextes résineux	Contextes Feuillus		
Hauteur dominante (H0)	0,4 à 1,4 m	0,7 à 1,4 m		
Diamètre D0 ou Dg	2,5 à 6,0 cm	2,5 à 8,0 cm		
% Fs / Rx en G	10 à 15%	10 à 15%		
Surface terrière G	2,5 à 7,0 m2/ha (10 à 25%)	3,5 à 6,0 m2/ha (10 à 30%)		
Surface terrière des GB	3,5 à 6,5 m2/ha (30 à 50 %)	2,5 à 6,0 m2/ha (30 à 60 %)		
Densité de tiges / ha	50 à 180 t/ha (20 à 40%)	30 à 140 t/ha (15 à 40%)		
Familles de structures	20 à 35 %	20 à 35 %		
	Très bon	Moyen		

Bon


Des notions plus techniques : domaine de validité / extrapolation

inventaire	modèle
inventaire	modele
<u>on</u> <u>estime</u> une population à partir d'un échantillon	<u>on</u> prédit un pixel
- théorème central- <u>limite :</u> la moyenne de moyennes ~ loi	- l'aléa vient <u>des paramètres</u> du modèle (pas de
normale (\bar{x} -> μ)	l'échantillon)
- <u>l'échantillon est aléatoire</u> et sa dimension est liée à la	- la précision est liée au modèle , pas au nombre de pixels
précision de l'estimation	- l'échantillonnage peut être <u>dirigé</u> (+ efficace)
- le <u>plan d'échantillonnage</u> est important	- Les inférences sont déduites du modèle (pas du plan
Inférences sont déduites du plan d'échantillonnage	d'échantillonnage)
- résultats asymptotiquement non-biaisés	- biais locaux à craindre

a

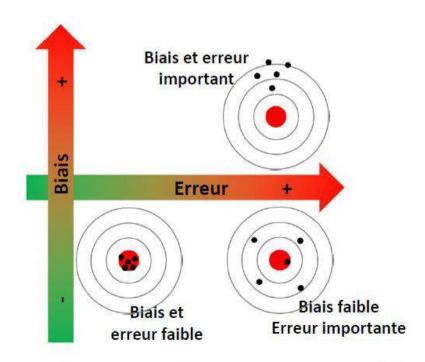
100

Hmean

Hall volume of plots)

Encore des choses à développer pour bien cerner le domaine de validité des modèles et identifier les zones en extrapolation susceptibles de comporter des biais

Annexe1 - Positionnement du Lidar - erreurs


✓ Les erreurs des modèles de prédiction LiDAR

- A l'échelle de la placette (≈ 7 ares)
 - Faibles pour les diamètres (ex. D0 de 2.3 à 6 cm), très faible pour les hauteurs (ex. H0 de 0.7 à 1.4 m)
 - Peuvent sembler élevées pour G (de 3.3 à 9 m²/ha soit 13 à 26%)
 - Variable pour les densités : tendance à sous estimer les fortes densités !
- A l'échelle du peuplement (≈ 1 ha)
 - Restent faibles pour les diamètres et les hauteurs
 - Diminuent significativement pour G
 - Ex. Combe d'Aillon : 7.1 (16%) / placette → 3.9 (10%) / ha
 - Ex. Modane : 6.4 (18%) / placette → 4.3 (11%) / ha

A relativiser / enjeux de production (ex D0 en feuillus qualité)

√ Rappel des notions d'erreurs

- Erreur = exactitude : écart entre la référence et l'estimation ou la prédiction (erreur quadratique moy)
- Biais = écart systématique : tendance de surestimation ou de sous estimation (moyenne des écarts)
- Erreur statistique = erreur d'échantillonnage : faible si nombre de placettes ☐ (détermine si le nombre de placettes est suffisant pour obtenir une bonne estimation en considérant que les mesures sont sans erreur)

Annexe1 - Positionnement du Lidar / autres méthodes

√ Comparaison des méthodes

Avantages / Inconvénients

Méthode d'inventaire	Cartographie	Estimation / peuplement	Estimation / bloc	Suivi aménagement	Accroissements
LiDAR	OUI Haute résolution (≈ 7a)	OUI	OUI	OUI	NON
Relascope	Moyen si 1 pt/ha	NON	OUI	Moyen	NON
lnv. en plein	NON	OUI	OUI	Moyen	OUI si +sieur inv.
Inv. statistique	NON	NON	OUI	NON	OUI si plac. permanente

Données fournies par Lidar, Données aménagement manquantes

Paramètre forestier	Modélisation LiDAR ?	Observation
Hauteur dominante (H0)	Oui	
Surf. terrière (G)	Oui	
Surf. terrière gros bois (GGG)	Oui	
Volume (V)	Oui	Si référence terrain disponible
Diamètre moyen (Dg)	Oui	
Diamètre dominant (D0)	Oui	
Densité (N)	Oui	Qualité des résultats variable

Paramètre forestier	Modélisation LiDAR ?	Observation
Famille d'essence (feuil/rés)	Possible	Pas de distinctions entre les feuillus !
Structure, typologie	Non traité ici	Réalisable à la demande (dép. RDI)
Suivi surf.jeunes peup (Ht BDR)	Non traité ici	Réalisable à la demande (dép. RDI)
Trouées	Non traité ici	Réalisable à la demande (dép. RDI)
Régénération sous couvert	Non	
Dégâts gibier	Non	
Bois mort	Non	

- En vert : paramètre modélisable et intégré à la chaine de traitement actuelle
- En orange : paramètre modélisable mais non intégré à la chaine de traitement actuelle
- En rouge : paramètre non modélisable à partir de données LiDAR